
Sequence Alignment

Trying to “line-up” two strings in the most optimal way possible, where “optimal” in this case means there's a minimal
amount of gaps in the two strings, or mismatches between a pair of characters matched between the two strings.

Suppose we are given two strings,   and   where   consists of the sequence of symbols   and   consists of the

sequence  . 

Consider the sets   and   as representing the different positions in the strings   and 

A matching of two sets,   (where this matching uses the position sequences) is a set of ordered pairs   where each ele-
ment from the set appears in at most one pair. Additionally there are no crossings - which is a fancy way of saying you must
keep the characters of the string in order for both strings - don't pair early elements of one string with late elements of
another. 

Mathematically: if   and   are in the matching, and if   then  .

Determining the “similarity” between two strings will be based on finding the optimal alignment of   and  . Let's call   an

alignment between   and    We determine what is “optimal” based on two weights/penalties…

 - gap penalty. For each position of   or   that is not matched in   is a gap, that comes with a cost  . 

These gaps are represented as dashes in the matchings.

 - mismatch cost for a lining up of a (different)   and  . Generally, you assume   when  , that be-

ing, when you have the same letter for your pairing - it costs nothing. Otherwise (when  ), you assume some other 

 which can be a constant value for any mismatch or variable based on some other rules.

The cost of   is the sum of the gap and mismatch penalties. The goal is to minimize this cost. The process of minimizing this
cost is called sequence alignment.

 

In an optimal alignment of  , one of the following is true;

 or…
the   position of   is not matched; or…
the   position of   is not matched.

In other words, either the last two symbols (  and  ) in the two strings are matched, or one of them is mismatched (placed
against a gap).

From here the actual dynamic programming solution can be built - based on the cases above being applied to cascading
subproblems;

Let   represent the optimal (minimal cost) of aligning the first   characters from   and the first   characters of 

. This definition uses a recurrence relation based on the 3 possibilities above - slowly building up the overall optimal so-

lution by using the optimal solution of smaller subsets (looking at   for   and/or  ) + the best cost for the

current   pairing;

This recurrence relation is picking the best (lowest) cost result out of three possible cases (corresponding to the cases
listed above).

If   and   are matched, the cost is 

Then we add this to the cost of the preceding optimal solution:  .

 position of   is not matched (put gap in  )

If   is aligned with a gap, add the gap penalty 

We then add   - we don't use   as we used a gap, and thus haven't changed what the “current”   to
be matched.

 position of   is not matched (put gap in  )

If   is aligned with a gap, there is a gap penalty  .

Introduction

X Y X x  , ...,x  1 m Y

y  , ...y  1 n

{1, 2, ...,m} {1, 2, ...,n} X Y

M (i, j)

(i, j) (i , j )′ ′ i < i′ j < j′

X Y M

X Y

δ > 0 X Y M δ

α  x  y  i j
p q α  =x  ,y  i j

0 x  =i y  j

x  =i  y  j

α > 0

M

The Algorithm

M

(m,n) ∈ M

mth X

nth Y

x  m y  n

OPT(i, j) i X j

Y

OPT i − 1 j − 1
(i, j)

OPT(i, j) = min [α  +x  y  i j
OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i, j − 1)]

(i, j) ∈ M

x  i y  j α  x  ,y  i j

OPT(i − 1, j − 1)

ith X Y

x  i δ

OPT(i − 1, j) j − 1 j

jth Y X

y  j δ

We then add  . Again, we don't use   as we put a gap there, and thus haven't changed the “current” 
 to be matched next.

 

Using this recurrence relation, we build up until we get our solution value of  .

 

The algorithm is implemented using the following psuedocode;

Alignment(X,Y)

    Array A[0 . . . m,0... n]

    Initialize A[i, 0]= iδ for each i

    Initialize A[0, j]= jδ for each j

    For j = 1, . . . , n

        For i = 1, . . . , m

            Use the recurrence equation above to compute A[i, j]

        Endfor

    Endfor

    Return A[m, n]

 

This implementation uses a (pretty typical) 2D DP array. Let's call it A. This array is of size  . (Recall

that   is for   and   is for  ). This array will store the minimum alignment costs for different subproblems, where A[i]
[j] represents the cost of aligning the first   characters of   with the first   characters of  . In other words, A[i][j]
=  .

For purposes of initialization, we note that   for all  , since the only way to line up an  -letter

word with a  -letter word is to use   gaps.

Meaning that the array is of size   because we have an additional row/column representing the use of just

gaps. These rows/columns are filled up incrementally by   to denote an increasing number of used gaps.

For example, for a matching of “ACGT” with “AGCT” it would start as looking something like this… (assuming  )

 

From here, you just fill in the rest of the DP cells based on the recurrence relation established above.

In other words, define every A[i][j] where;

We go left-to-right, top-to-bottom to satisfy the needed equation dependencies at each cell.

 

Assuming   and   (for any mismatch). The table for ACGT, AGCT would look something like this;

 

OPT(i, j − 1) i − 1 i

OPT(m,n)

In Code

(m + 1) × (n + 1)
m X n Y

i X j Y

OPT(i, j)

OPT(i, 0) = OPT(0, i) = iδ i i

0 i

(m + 1) × (n + 1)
δ

δ = 1

    A C G T

  0 1 2 3 4

A 1        

G 2        

C 3        

T 4        

A[i][j] = min α  + A[i − 1][j − 1], δ + A[i − 1][j], δ + A[i][j − 1][ x  y  i j
]

δ = 1 α = 1

    A C G T

  0 1 2 3 4

A 1 0 1 2 3

G 2 1 1 1 2

C 3 2 2 2 2

T 4 3 3 3 2

Final answer is stored in A[m][n]

 

 time and space - you make a table, and fill it out linearly. (simpul as)

 

 

 

 

 

Analysis

Θ(mn)


